
Dissecting representations?

Daniel Raggi1, Aaron Stockdill1, Mateja Jamnik1,
Grecia Garcia Garcia2, Holly E. A. Sutherland2, and Peter C.-H. Cheng2

1 University of Cambridge, UK
{daniel.raggi,aaron.stockdill,mateja.jamnik}@cl.cam.ac.uk

2 University of Sussex, UK
{g.garcia-garcia, h.sutherland, p.c.h.cheng}@sussex.ac.uk

Abstract. Choosing effective representations for a problem and for the
person solving it has benefits, including the ability or inability to solve
it. We previously devised a novel framework consisting of a language to
describe representations and computational methods to analyse them in
terms of their formal and cognitive properties. In this paper we demon-
strate the application of this framework to a variety of notations includ-
ing natural languages, formal languages, and diagrams. We show how
our framework, and the analysis of representations that it enables, gives
us insight into how and why we can select representations which are
appropriate for both the task and the user.

Keywords: Knowledge representation · Reasoning · Intelligent systems.

1 Introduction

A given problem can be represented in a variety of ways, and the choice of
representation determines whether it can be solved at all, as well as influences
the performance of problem solvers—either helping or hindering them. It is up
to the problem solver to represent the problem appropriately before solving
it. Likewise, in a tutoring setting, it is up to the tutor to select an effective
representation for a given audience. But what is an effective representation, and
how can we tell it apart from a bad representation?

The quality of a representation is a confluence of many factors [2, 4], including
whether it expresses the necessary information, makes this accessible, enables
useful inferences, and reduces the search space for the problem solver. Many of
these factors are user-dependent; some representations may be ideal for expert
users, but not for novices, and vice-versa. The ultimate goal of our research is to
understand what makes an effective representation, computationally model this
analysis, and thus enable the automation of representation selection.

In previous work we introduced a language [9] for encoding the properties
of representational systems, in addition to correspondences between them [11].
The purpose was to calculate an informational measure, which, given a problem,
estimates the likelihood that the important information for this problem can be

? This work was supported by the EPSRC grants EP/R030650/1, EP/R030642/1,
EP/T019034/1 and EP/T019603/1. We thank Gem Stapleton for her useful comments.

peterch
Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, H. E. A., & Cheng, P. C. H. (2020). Dissecting Representations. In A.-V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, & S. Linker (Eds.), Diagrammatic Representation and Inference (pp. 144-152). Cham: Springer.
doi:10.1007/978-3-030-54249-8_11

�

2 D. Raggi et al.

expressed in any given representational system. In subsequent work we imple-
mented algorithms for computing cognitive measures of representations. Calcu-
lating these measures requires a richer and more structured language, which we
incorporated in our framework. Specifically, we introduced attributes which allow
us to encode structural information and more detailed descriptions of the rep-
resentation’s components. In this paper we illustrate through examples how to
use our language (including its new additions) to describe representations in the
framework. Moreover, we demonstrate how the framework can be used for rep-
resentation selection based on informational and cognitive measures. Our work
provides novel and general computational methods for assessing and compar-
ing sentential and diagrammatic representations that are formal and informal,
general and specialised; and could thus be used for making AI systems more
human-like and adaptable to the user. An Appendix for this paper can be found
at https://sites.google.com/site/myrep2rep/publications/dissecting.

2 How to describe representations?

The fundamental objects that our framework aims to describe are representa-
tional systems (RSs). For example, Arithmetic Algebra forms an RS in which
expressions are constructed using tokens (e.g., x, 0,+,=,≤) with some gram-
matical constraints (e.g., = needs to be filled with expressions of the same
type), and its expressions can be manipulated according to some rules (e.g.,
x + 0 ≤ y can be rewritten as x ≤ y). Moreover, our framework also describes
concrete instances of representations, such as problem formulations. For instance,
the problem in Arithmetic Algebra: assuming 0 < x and x · y = 0, prove y = 0.

2.1 Representational systems and problems

We characterise a representational system (RS) by its formal components: its
tokens, expressions (which we capture by patterns), types, tactics, and laws. A
component can have attributes, specified as a record of features associated with
it. We introduced these concepts (excluding attributes) elsewhere [9], so here
we only provide a brief explanation: tokens are atomic symbols from which ex-
pressions are built. Patterns are abstractions of expressions; and their attributes
encode structural information (e.g., how expressions can be nested in one an-
other). Types are a grammatically meaningful classification of expressions (e.g.,
the type of π + 4 is real), tactics are the possible manipulations and inferences
within the system (e.g., applying the modus ponens rule), and laws are the rules
or units of knowledge that enable some manipulations and inferences to be made.

A representational system is a general tool for representing many things, but
we are particularly interested in its use for representing problems. In this paper
we demonstrate how (four) different representations of the same problem can
be dissected and evaluated by the tools that our framework provides. We chose
to focus our analysis primarily on two RSs. The first (Bayesian) is a standard
formal notation for conditional probability, and the second (PS diagrams) is a
novel diagrammatic notation for probability, which has been shown to improve
students’ problem solving and learning [3].

Dissecting representations 3

Problem (Lightbulbs). There are two lightbulb manufacturers in town. One of them

is known to produce defective lightbulbs 30% of the time, whereas for the other one the

percentage is 80%. You do not know which one is which. You pick one to buy a lightbulb

from, and it turns out to be defective. The same manufacturer gives you a replacement.

What is the probability that this one is also defective?

The problem is presented in English (NL: Natural Language), which we do not
analyse here, but results for its informational and cognitive measures are shown
in §3. An analysis of the NL formulation can be found in Appendix.

Representation 1 (Bayesian) Denote the manufacturers as a and b. Let d1 and d2
be the events of the first and second lightbulbs being defective, respectively. Clearly, d2
is conditionally independent of d1 given the choice of manufacturer.

Assume: b = ā (1)

Pr(a) = Pr(b) (2)

Pr(d2 | x ∩ d1) = Pr(d2 | x) for x ∈ {a, b} (3)

Pr(d1 | a) = Pr(d2 | a) = 0.3 (4)

Pr(d1 | b) = Pr(d2 | b) = 0.8 (5)

Calculate: Pr(d2 | d1).

Some notable tokens here are Pr, |, ∩, a, b, d1, d2. Some features of these tokens
can be encoded by attributes. For instance, we write

token a : {type := event, occurrences := 5}
to indicate that a is a token with type event, and that it occurs 5 times in
this specific representation. Moreover, we can assign more complex types, such
as event × event → real to Pr. In our framework this implies that there is a
pattern, associated with the token Pr, encoded as follows:

pattern patt(Pr) : {type := real, holes := [event2], tokens := [Pr, |, (,)]}
Intuitively, patt(Pr) represents the expressions of the shape Pr(|). The
declaration above means: first, that these expressions have type real; second,
that they are formed by plugging in two expressions of type event into the
holes; and third, that they necessarily use each of the tokens Pr, |, (, and). In
our implementation,3 every pattern associated with a token (of nontrivial type)
is generated automatically, such as for ∩, =, and ∈.

Our framework can also encode inferential aspects (use of tactics and laws),
which we illustrate by analysing the solution below (full solution in Appendix).

Solution (Bayesian) Amongst other things, use the law of total probability
(LTP), de Finetti’s axiom of conditional probability (dF), Bayes’ theorem (BT),
arithmetic calculation (calc). For conciseness we show only a part of the solution:

Pr(d2 | d1) = Pr(d2 ∩ a | d1) + Pr(d2 ∩ b | d1) (by LTP, asm 1)

= Pr(d2 | a ∩ d1) Pr(a | d1) + Pr(d2 | b ∩ d1) Pr(b | d1) (by dF)
.
.
.

=
0.3 · 0.3 + 0.8 · 0.8

0.3 + 0.8
≈ 0.663 (by calc)

3 https://github.com/rep2rep/robin

4 D. Raggi et al.

Every step in this solution can be characterised as an application of the tactic
rewrite, or an arithmetic calculation. This, and more information (e.g., how many
times each tactic is applied) can be encoded by attributes, as follows:

tactic rewrite : {occurrences := 18, inference type := substitution,
law params := 1, pattern params := 1}

tactic calculate : {occurrences := 1, inference type := calculation,
law params := 0, pattern params := 1}

Foreshadowing what this means in terms of the cognitive cost of using this rep-
resentation, calculation is in principle a more complex operation, but rewriting
has a larger contribution to the breadth of the search space because it can be
applied in many ways depending on the laws at hand.

Representation 2 (PS diagrams) Below, labelled segments represent events and
their lengths represent their probability. The ratio that needs to be calculated is that
of the thicker line relative to the space between the thick delimiters.

first
trial

second
trial

target
result

a b
d d

a b
d d

For first trial a = b.

For both trials:

d/a = 0.3

d/b = 0.8

This representation has some important characteristics (segments, delimiters,
proportions, etc.) that need to be captured in our description. Amongst others,
some tokens are the horizontal segments (thin and thick), the vertical marks
(thin and thick) and the vertical lines. Emergent components, such as a seg-
ment formed by two colinear segments, relations between components, or values
thereof (e.g., length), can be expressed as patterns:

pattern joint segments : {type := segment, holes := [segment2], . . .}
pattern aligned segments : {type := relationship, holes := [segment2], . . .}
pattern relative length : {type := real, holes := [segment2], . . .}

Patterns also allow us to represent emergent gestalt items. For instance, the
‘segment’ inbetween the 2 target delimiters can be encoded by:

pattern segment from delimiters : {type := segment,

holes := [delimiter2], . . .}

We proceed to analyse the inferential aspects of this representation by looking
at a solution.

Solution (PS diagrams) The length of the segments labelled d in the second
trial must be 0.3·0.3·x and 0.8·0.8·x where x is the length of a (and b) in the first
trial. Moreover, the length between the target delimiters must be 0.3 · x+ 0.8 · x.
Thus, the desired ratio is 0.3·0.3·x+0.8·0.8·x

0.3·x+0.8·x . This yields ≈ 0.663.

This solution is quite condensed because each inference relies on mere observa-
tions which are possible as an immediate consequence of having represented the

Dissecting representations 5

assumptions [10]. Here we assume observations apply to patterns; e.g., observing
the relative length is obtaining the real number that represents such relation.
We can capture the notion of observation as a tactic:

tactic observe : {occurrences := 10, inference type := observation,

pattern params := 1, law params := 1, . . .}
Finally, the sequence of observations leads to a ratio that the user still needs to
calculate, so we need a calculation tactic similar to the Bayesian RS.

So far we analysed one sentential and one diagrammatic representation. We
hope this demonstrates that our language is simple yet expressive. Below, we
give alternative representations under consideration, but without analysis.

Representation 3 (Areas) In the figure, regions represent events, and their
relative areas represent the corresponding probabilities. Solution in Appendix.

a b

1

0.3

0
.3

0.8

0
.8

Calculate the ratio of
against .

Representation 4 (Probability trees) In the rooted tree below, the values of
edges represent conditional probabilities and the values of the nodes represent the
joint probability of the nodes in the path. Solution in Appendix.

a b

d ¬d

d ¬d d ¬d

d ¬d

d ¬d d ¬d

0.5 0.5

0.3 0.8

0.3 0.8

Calculate the ratio
of the values of the
nodes enclosed in
against the values of
the nodes enclosed
in .

2.2 Writing RS and Q descriptions

The example RSs above demonstrate the expressiveness and intuitions behind
the components of our framework. But, what should the end result of analysing
representations look like?

An RS description is a collection of meaningful components of an RS: it
must include tokens that typically appear in the instances of such an RS, and
patterns, laws and tactics that are relevant for using such an RS. Similarly, a
Q description (Q for question) is a collection of meaningful components of a
problem representation in some specific RS that the question is posed in. Each
component in a Q description must have an importance [9] value associated with
it, encoding how informative this component is for finding a solution (defined in
the interval between 0 for noise and 1 for maximal relevance; we use colours for
discretised values). A longer discussion of importance can be found in Appendix.

See Figure 1 for two RS descriptions, and Figure 2 for a Q description (organ-
ised in a hierarchy of 4 importance values, where purple is the most important).

6 D. Raggi et al.

Bayesian

types event, real, formula, proof

tokens = : {type := α× α→ formula},
Pr : {type := event× event→ real,

tokens := [| .(.)]},
∩ : {type := event× event→ event},
Ω : {type := event}, . . .

patterns equality chain : {type := proof,

holes := [α
O(log n)

],

tokens := [=]}, . . .
tactics rewrite : {inference type := subst, . . .},

calculate : {inference type := calc, . . .},
lemma : {inference type := match, . . .}

laws LTP, dF, BT, . . .

PS diagrams

types segment, vertical guide, delimiter, real

tokens $outcome segment : {type := segment},
$target delimiter : {type := delimiter},
$target segment : {type := segment}, . . .

patterns joint segments : {type := segment,

holes := [segment
2
]},

relative length : {type := real,

holes := [segment
2
]},

. . .

tactics observe : {inference type := obs, . . .},
calculate : {inference type := calc, . . .}

laws MNR, EAS, LADJ, . . .

Fig. 1. Snippets of Bayesian and PS diagrams RS descriptions. Note the prefix $ to
specify that this is a label for a non-unicode token.

Lightbulbs in NL

answer type ratio

types number,event

tokens probability : {type := N, occurrences := 1},
% : {type := number→ ratio, occurrences := 2}

patterns sequential events : {type := relationship, holes := [event2], . . .},
conditionally independent events : {type := relationship, holes := [event2], . . .}

tokens 30 : {type := number, occurrences := 1},
80 : {type := number, occurrences := 1},
percentage : {type := N, occurrences := 1}

tokens lightbulb : {type := N, occurrences := 2},
defective : {type := N, occurrences := 3},. . .

patterns SfromNPandVP : {type := S, holes := [NP, VP],. . . }. . .

Fig. 2. A section of the Q description of the Lightbulbs problem in NL.

3 Evaluating representations

We can use RS and Q descriptions to compute important measures: informa-
tional suitability (presented in [9]), and cognitive cost.

The Informational Suitability (IS) of an RS, r, given a problem q is the sum of
the strengths of analogical correspondences [11] between components that match
the source q and the target r, modulated by the importance of said components:

IS(q, r) =
∑

〈a,b,s〉∈C

s · importanceq(a). (6)

It computes the extent to which an RS can express all the relevant parts of the
problem at hand. For the Lightbulb problem with 5 candidate RSs the results
are shown below:

RS Bayes PS diag. Areas Pr-trees NL

score 7.9 7.5 7.2 6.6 6.3

The Cognitive Cost encodes the RS’s processing cost to the user, and is
calculated by computing a set of properties of the representation, all of which
can be estimated by values computed from Q descriptions (out of the scope of this
paper). These properties are based on established cognitive science concepts [1,
6–8, 12, 13], presented schematically in Figure 3.

Dissecting representations 7

token expression whole
registration

semantic
encoding

inference

solution

registration

number of types

concept mapping

subRS variety

quantity
scale

expression complexity

inference type branching factor

solution depth

Fig. 3. Cognitive properties organised according to granularity (columns) and cognitive
process level (rows).

Each of the properties is associated with a cognitive process, and thus a
cognitive cost. Moreover, the user is modelled by their expertise [5], which is
accounted for in two ways: by flattening importance (to model that a novel
user cannot distinguish between important and unimportant properties), and by
inflating the cost of higher-level cognitive processes. Given a Q description for
a problem q, the costs for each cognitive property p and user u are calculated,
normalised, and weighted by an expertise factor cp(u). The values for all p are
summed to obtain a total cost.4

Cost(q, u) =
∑
p

cp(u) · normp(costp(q, u)). (7)

See the rankings of RSs according to their estimated cognitive cost for the Light-
bulb problem, for three different users:5

Bayesian PS diag Areas Pr trees NL

expert | avg. | novice 1 | 2 | 4 4 | 1 | 1 2 | 3 | 2 5 | 4 | 3 3 | 5 | 5

The main contributing factor to the differences in rankings between novices
and experts comes from the cognitive costs associated with high granularity prop-
erties, for example: branching factor and solution depth. Because the weights as-
sociated with these costs scale with expertise, a representation like the Bayesian
representation is penalised more heavily here for novices than for experts (drop-
ping from first to fourth). Conversely, we see the Areas and PS diagrams rep-
resentations have relatively low values in these cognitive costs, and as such are
less penalised for novice users.

4 Conclusion and future work

We demonstrated our computational framework for analysing representations
by explicitly constructing RS and Q descriptions for a particular problem and
a number of candidate alternative representations. These descriptions serve as
input to compute informational and cognitive measures of the suitability and the
cost of using a representation by a particular user. Q and RS descriptions need

4 These calculations rely on parameters whose values we gave provisionally based on
the literature, but which need to be tuned based on empirical data.

5 The costs, broken down per cognitive property, can be found in appendix.

8 D. Raggi et al.

to be built by an expert analyst; this includes decomposing into components,
assigning importance and attributes to components, setting up correspondences
with their strengths, and tuning the parameters of cognitive properties based on
empirical data. Current and future work involve operationalising the process of
obtaining descriptions and carrying out user studies for parameter tuning.

The generality of our approach makes our framework potentially useful for
a variety of endeavours: from multi-representational tutoring systems, to user-
sensitive interactive theorem provers. The ability to consider the user allows the
framework to be deployed across many domains varying in their level of spe-
cialisation. The framework’s descriptions are computation-friendly, creating an
opportunity for diverse, diagrammatic representations to be evaluated and sub-
sequently implemented in domains where sentential representations dominate.

References

1. J. Anderson. Spanning seven orders of magnitude: A challenge for cognitive mod-
eling. Cognitive Science, 26(1):85–112, 2002.

2. A. Blackwell et al. Cognitive dimensions of notations: Design tools for cognitive
technology. In Cognitive Technology, pp. 325–341. Springer, 2001.

3. P. Cheng. Probably good diagrams for learning: representational epistemic recod-
ification of probability theory. Topics in Cognitive Science, 3(3):475–498, 2011.

4. P. Cheng. What constitutes an effective representation? In Diagrams 2016, pp.
17–31. Springer, 2016.

5. M. Chi. The nature of expertise. Lawrence Erlbaum Associates, Inc, 1988.
6. J. Larkin and H. Simon. Why a diagram is (sometimes) worth ten thousand words.

Cognitive Science, 11(1):65–100, 1987.
7. D. Moody. The “physics” of notations: toward a scientific basis for constructing

visual notations in software engineering. IEEE Transactions on Software Engi-
neering, 35(6):756–779, 2009.

8. A. Newell. Unified theories of cognition. Harvard University Press, 1990.
9. D. Raggi et al. Inspection and selection of representations. In CICM, pp. 227–242.

Springer, 2019.
10. G. Stapleton, M. Jamnik, and A. Shimojima. What makes an effective representa-

tion of information: a formal account of observational advantages. Logic, Language
and Information, 26(2):143–177, 2017.

11. A. Stockdill et al. Correspondence-based analogies for choosing problem represen-
tations in mathematics and computing education. In 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2020. In press.

12. M. Van Someren et al. Learning with Multiple Representations. Advances in Learn-
ing and Instruction Series. ERIC, 1998.

13. J. Zhang. A representational analysis of numeration systems. Cognition, 57(3):271–
295, 1995.

Dissecting representations 9

Appendix

Dissection of Natural Language formulation of the Lightbulb problem

The tokens of NL are its words (in addition to numbers, full stops, delimiters,
etc.). In this case, there are 51 unique tokens, some of which occur more than
once. For instance, the word ‘defective’ occurs three times. The types of these
tokens, insofar as NL is concerned are nouns (N), verbs, (V), adjectives (ADJ),
etc. Thus, in our framework we write:

token defective : {type := ADJ, occurrences := 3}

The items specified inside curly brackets (in this case type and occurrences)
are called attributes. Note that the type is a global attribute, in the sense that
‘defective’ will be an adjective in any use of the NL RS, whereas occurrences is
local, in the sense that defective happens to occur three times in this problem,
but this is not the case in other uses of the RS.

Moreover, the grammar of NL is described by rules, for example, a sentence
(S) can be formed from a noun phrase (NP) and a verb phrase (VP). In this
example, six of the sentences are constructed from this one rule. Within our
framework, we describe these rules by the use of patterns as follows:

pattern SfromNPandVP : {type := S, holes := [NP, VP], occurrences := 6}

Note that the pattern type is declared as the resulting type of any expression
that was constructed using the pattern. Holes are uninstantiated subexpressions.

We can discern more complex patterns too, for instance, sequential events
(e.g., the first lightbulb you buy is defective and you get the replacement). In-
tuitively, this pattern is characterised by the relation of two events, so we can
write:

pattern sequential : {type := relationship, holes := [event2],

occurrences := 3}

We use the type relationship to denote patterns which refer to facts. We
write event2 to specify that two entities of that type are needed to satisfy the
pattern. But where does the type event come from, if the entities of NL have
only typical grammatical types (S, V, NP, etc.)? For this problem, the reader is
expected to interpret some sentences as events, which we encode by a pattern
eventFromS:

pattern eventFromS : {type := event, holes := [S],

occurrences := 3}.

10 D. Raggi et al.

Solutions in a variety of RSs

Solution (Bayesian).

Pr(d2 | d1) = Pr(d2 ∩ a | d1) + Pr(d2 ∩ b | d1) (by LTP, asm 1)

= Pr(d2 | a ∩ d1) Pr(a | d1) + Pr(d2 | b ∩ d1) Pr(b | d1) (by dF)

= Pr(d2 | a) Pr(a | d1) + Pr(d2 | b) Pr(b | d1) (by asm 3)

= Pr(d2 | a)
Pr(d1 | a) Pr(a)

Pr(d1)
+ Pr(d2 | b)

Pr(d1 | b) Pr(b)

Pr(d1)
(by BT)

=
Pr(d2 | a) Pr(d1 | a) Pr(a) + Pr(d2 | b) Pr(d1 | b) Pr(b)

Pr(d1 ∩ a) + Pr(d1 ∩ b)
(by dist, LTP)

=
Pr(d2 | a) Pr(d1 | a) Pr(a) + Pr(d2 | b) Pr(d1 | b) Pr(b)

Pr(d1 | a) Pr(a) + Pr(d1 | b) Pr(b)
(by dF)

=
0.3 · 0.3 · Pr(a) + 0.8 · 0.8 · Pr(b)

0.3 · Pr(a) + 0.8 · Pr(b)
(by asms 4,5)

=
0.3 · 0.3 + 0.8 · 0.8

0.3 + 0.8
≈ 0.663 (by calc)

Solution (Areas). The patterned region must have an area of 0.32 + 0.82, and
the shaded region must have an area of 0.3 + 0.8. Then, the desired ratio is
0.32+0.82

0.3+0.8 ≈ 0.663. The description of the inferential aspects of this representa-
tion is similar to that of PS diagrams.

Solution (Probability trees). According to the law of path multiplication, the
values of the nodes enclosed in are 0.5 · 0.32 and 0.5 · 0.82, and the values
of the nodes enclosed in are 0.5 · 0.3 and 0.5 · 0.8. Thus, the desired ratio is
0.32+0.82

0.3+0.8 ≈ 0.663.

Representation 5 (Euler + cardinality algebra) We chose Euler diagrams
RS for its notable inadequacy for this problem, as Euler diagrams do not specify
the size of the sets in question. Thus, we need to supplement it with cardinality
algebra to have something informationally comparable to the other RSs presented
so far.

a bd1

d2

Assume: d1 ⊆ a ∪ b
d2 ⊆ a ∪ b
a	=	b
d1 ∩ a	= 0.3 ·	a
d1 ∩ b	= 0.8 ·	b
d2 ∩ a ∩ d1	= 0.3 ·	a ∩ d1
d2 ∩ b ∩ d1	= 0.8 ·	b ∩ d1

Calculate:
|d2 ∩ d1|
|d1|

Importance

When a problem is presented, it is clear that some components used in the rep-
resentation are more important than others, and some may even be irrelevant

Dissecting representations 11

(noise). We use the notion of importance to express this. Clearly, the impor-
tance is strictly relevant to the task, so we express it only when describing a
problem (such as the Lightbulbs problem above) in a particular representation
(for example, in Natural Language). Importance is defined as a function from
the components to the interval ranging between 0 and 1, where 0 is noise and 1
denotes a maximally informationally relevant property. For example, the token
Pr for the Bayesian representation of the Lightbulbs problem is important. As-
signing importance is like finding good heuristics – in our framework, the domain
expert who is setting up our framework for their deployment assigns these val-
ues. In the future, we will explore if there is a principled approach to assigning
these values, and if these importance parameters can be generated automatically
by analysing a sufficiently large set of problems.

In practice, we distinguish between discrete classes of importance as fol-
lows: a component is essential (importance(x) = 1) if replacing it with some-
thing else modifies the nature of the problem. A component is instrumental
(0.5 ≥ importance(x) < 1) if a solution most certainly needs the component.
A component is relevant (0 < importance(x) < 0.5) if it is useful for under-
standing the problem but it could be replaced for something else without affect-
ing the structure of the solution, and we say that it is circumstantial or noise
(importance(x) = 0) if removing it does not affect the solution at all.

Thus, for Q descriptions, components are classified according to their impor-
tance.

Cognitive costs for six RSs, broken down by cognitive properties

Table 1. Estimated costs, with weighted normalisation function ηp for each of the
cognitive properties for average user (u = 0.5). tr = token registration, er = ex-
pression registration, tt = number of token types, et = number of expression types,
cm = concept-mapping, qs = quantity scale, ec = expression complexity, it = inference
type, sr = subRS variety, bf = branching factor, sd = solution depth.

normp(x) NL Bayesian Pr trees Euler+ PS diag Areas

tr 0.5 · ηtr(x) 0 35.4 45.6 50 30.6 18.6
er 0.5 · ηer(x) 11.9 7.4 2.6 20.1 0 50
tt 1 · ηtt(x) 0 100 78.9 68.4 52.6 50
et 1 · ηet(x) 51.3 0 79.5 38.5 48.7 100
qs 1 · ηqs(x) 26 0 94 42.7 100 53.1
cm 2 · ηcm(x) 109 0 200 147 173 183
ec 2 · ηec(x) 137 0 86.9 200 116 99.1
it 2 · ηit(x) 200 59.7 0 25.6 2.3 20.4
sr 4 · ηsr(x) 0 0 0 400 0 0
bf 4 · ηbf(x) 271 250 198 400 0 257
sd 4 · ηsd(x) 271 310 129 400 205 0

total 98 69.3 83.2 163 66.3 75.6

rank 5 2 4 6 1 3

